Jumat, 14 Juni 2013

ARTIKEL STATISTIKA DESKRIPTIF

Statistika deskriptif



Contoh Statistika Deskriptif : Grafik pengunjung suatu website
Statistika deskriptif adalah metode-metode yang berkaitan dengan pengumpulan dan penyajian suatu gugus data sehingga memberikan informasi yang berguna. Pengklasifikasian menjadi statistika deskriptif dan statistika inferensia dilakukan berdasarkan aktivitas yang dilakukan.
Statistika deskriptif hanya memberikan informasi mengenai data yang dipunyai dan sama sekali tidak menarik inferensia atau kesimpulan apapun tentang gugus induknya yang lebih besar. Contoh statistika deskriptif yang sering muncul adalah, tabel, diagram, grafik, dan besaran-besaran lain di majalah dan koran-koran. Dengan Statistika deskriptif, kumpulan data yang diperoleh akan tersaji dengan ringkas dan rapi serta dapat memberikan informasi inti dari kumpulan data yang ada. Informasi yang dapat diperoleh dari statistika deskriptif ini antara lain ukuran pemusatan dataukuran penyebaran data, serta kecenderungan suatu gugus data.
Histogram
Dari suatu data yang diperoleh dapat disusun dalam tabel distribusi frekuensi dan disajikan dalam bentuk diagram yang disebut histogram. Jika pada diagram batang, gambar batang-batangnya terpisah maka pada histogram gambar batang-batangnya berimpit. Histogram dapat disajikan dari distribusi frekuensi tunggal maupun distribusi frekuensi bergolong. Untuk lebih jelasnya, perhatikan contoh berikut ini.

Data banyaknya siswa kelas XI IPA yang tidak masuk sekolah dalam 8 hari berurutan
sebagai berikut.

Poligon Frekuensi

Apabila pada titik-titik tengah dari histogram dihubungkan dengan garis dan batangbatangnya
dihapus, maka akan diperoleh poligon frekuensi. Berdasarkan contoh di atas
dapat dibuat poligon frekuensinya seperti gambar berikut ini.


contoh soal:
Hasil pengukuran berat badan terhadap 100 siswa SMP X digambarkan dalam distribusibergolong seperti di bawah ini. Sajikan data tersebut dalam histogram dan poligon frekuensi.
Penyelesaian : 
Histogram dan poligon frekuensi dari tabel di atas dapat ditunjukkan sebagai berikut.
Poligon Frekuensi Kumulatif

Dari distribusi frekuensi kumulatif dapat dibuat grafik garis yang disebut poligon frekuensi kumulatif. Jika poligon frekuensi kumulatif dihaluskan, diperoleh kurva yang disebut kurva ogive. Untuk lebih jelasnya, perhatikan contoh soal berikut ini.
Hasil tes ulangan Matematika terhadap 40 siswa kelas XI IPA digambarkan dalam tabel di samping.
a. Buatlah daftar frekuensi kumulatif kurang dari dan lebih dari.
b. Gambarlah ogive naik dan ogive turun.

b. Ogive naik dan ogive turun
Daftar frekuensi kumulatif kurang dari dan lebih dari dapat disajikan dalam bidang
Cartesius. Tepi atas (67,5; 70,5; …; 82,5) atau tepi bawah (64,5; 67,5; …; 79,5)
diletakkan pada sumbu X sedangkan frekuensi kumulatif kurang dari atau frekuensi
kumulatif lebih dari diletakkan pada sumbu Y. Apabila titik-titik yang diperlukan
dihubungkan, maka terbentuk kurva yang disebut ogive. Ada dua macam ogive,
yaitu ogive naik dan ogive turun. Ogive naik apabila grafik disusun berdasarkan
distribusi frekuensi kumulatif kurang dari. Sedangkan ogive turun apabila berdasarkan
distribusi frekuensi kumulatif lebih dari.
Ogive naik dan ogive turun data di atas adalah sebagai berikut.




1.1. PERANAN STATISTIKA
Dunia penelitian atau riset yang dilaksanakan melalui penelitian laboratorium atau penelitian lapangan di manapun dilakukan mendapat manfaat dengan menggunakan dan memecahkan masalah melalui statistika. Hal ini dilakukan para peneliti untuk mengetahui apakah hasil penelitian dengan suatu metode yang baru lebih baik jika dibandingkan dengan metode yang lama. Dalam pembuatan model dari suatu penelitian, untuk menyatakan bahwa model tersebut dapat dipakai atau tidak maka digunakan teori statistika. Bahkan statistika cukup mampu untuk menentukan apakah faktor yang satu dipengaruhi oleh faktor lainnya. Jika ada hubungan antara satu faktor dengan faktor lainnya, berapa kuat hubungan tersebut? apakah dapat faktor yang satu ditinggalkan dan faktor lainnya dipakai untuk studi lanjut?
Uraian singkat di atas menyatakan bahwa statistika sangat diperlukan bukan saja dalam bidang yang terbatas kepada dunia penelitian tetapi mencakup dunia ilmu pengetahuan. Mengingat hal tersebut di atas maka dalam penjelasan berikut diuraikan tentang metode statistika yang diharapkan dapat digunakan dalam berbagai bidang dan atau berbagai disiplin ilmu, bukan statistika teoritis, oleh sebab itu tidak diuraikan tentang penurunan rumus, pembuktian sesuatu sifat atau dalil-dalil.

1.2. STATISTIK DAN STATISTIKA
Statistik berasal dari bahasa Latin yang artinya adalah “status” atau negara. Pada mulanya statistika berhubungan dengan fakta dan angka yang dikumpulkan oleh pemerintah untuk bermacam-macam tujuan. Statistik juga diturunkan dari kata bahasa Inggris yaitu state atau pemerintah.
Pengertian yang sangat sederhana tentang statistik adalah sebagai suatu kumpulan data yang berbentuk angka dan tersusun rapi dalam suatu tabel, grafik, gambar, dan lain-lain. Misalnya tabel mengenai keadaan pegawai di kantor-kantor, grafik perkembangan jumlah penduduk dari waktu ke waktu, dan lain sebagainya.
Sedangkan pengertian yang lebih luas mengenai statistik adalah merupakan kumpulan dari teknik mengumpulkan, analisis, dan interpretasi data dalam bentuk angka. Dan statistik juga merupakan bilangan yang menunjukkan sifat-sifat (karakteristik) data yang dikumpulkan tersebut.
Statistika dapat didefinisikan sebagai suatu ilmu pengetahuan yang berhubungan dengan cara-cara mengumpulkan fakta/data, pengolahan data, kemudian menganalisis data tersebut sehingga dapat diperoleh suatu kesimpulan/keputusan.
Statistik dapat dibagi menjadi dua macam yaitu Statistik Deskriptif dan Statistik Induktif (inferiens). Kedua macam statistik tersebut sebagai suatu metode yang mengandung kegiatan-kegiatan dari suatu proses untuk lebih mudah dipahami dan dapat digambarkan dengan bagan alir seperti pada Gambar 1.2.

Yang dimaksud dengan statistik deskriptif adalah usaha penjelasan arti secara fisis (bentuk) atau gambaran tentang karakteristik data agar dapat dengan mudah dipahami oleh pihak lain. Misalnya setelah dikumpulkan data, kemudian diolah dan dianalisis data tersebut sehingga dapat diambil kesimpulan yang akan ditunjukkan kepada yang membutuhkannya.
Sedangkan statistik induktif (inferens) adalah usaha pembuatan inferensi terhadap sekumpulan data yang berasal dari suatu sampel. Misalnya seorang dokter ingin mengambil suatu kesimpulan tentang penyakit seseorang tentunya disamping pemeriksaan secara komunikasi efektif juga berdasarkan data yang diperoleh dari laboratorium dapat memperkirakan penyakit apa yang dialami oleh orang sakit tersebut. Jadi dari sini dapat diterangkan inferensi adalah merupakan kerja perkiraan, peramalan kemudian pengambilan keputusan dan sebagainya.

1.3. D A T A
Data dan statistik cukup banyak digunakan sebagai ilmu pengetahuan yang diaplikasikan dalam kehidupan manusia sehari-sehari, baik di bidang eksakta maupun sosial. Oleh sebab itu dapat disimpulkan bahwa data dan statistik sangat erat hubungan antara keduanya.
Data adalah sekumpulan informasi atau nilai yang diperoleh dari pengamatan (observasi) suatu obyek, data dapat berupa angka dan dapat pula merupakan lambang atau sifat. Beberapa macam data antara lain; data populasi dan data sampel, data observasi, data primer, dan data sekunder.
Selain dari pada itu data juga dapat diterangkan dengan dua arti yaitu; arti secara kuantitatif dan arti secara kualitatif, data kuantitatif adalah data yang berbentuk angka atau nilai, contohnya, 6, 40, 100, 250 dan sebagainya, sedangkan data kualitatif adalah data yang berupa kata-kata, contohnya, baik, sedang, buruk, dan lain sebagainya.
Kedua data tersebut dapat dikonversikan antara satu dangan lainnya, misalnya dalam bentuk kuantitatif nilainya 80, maka nilai 80 apabila dikonversikan ke dalam bentuk kualitatif (dalam bentuk kata-kata) adalah baik (nilai 80 = nilainya baik).

1.3.1. Pengumpulan Data
Untuk pengumpulan data dapat dilakukan dengan dua cara yaitu sensus dan sampling.
Sensus adalah pengumpulan data yang mencakup seluruh elemen atau seluruh anggota populasi yang diselidiki, di mana data populasi adalah merupakan sekumpulan informasi (elemen) atau angka yang menyeluruh pada suatu obyek. Misalnya data yang diperoleh melalui sensus penduduk, data yang diperoleh dari hasil penggerebekan di suatu tempat yang tidak menyenangkan, data ini juga dikatakan data populasi karena data tersebut adalah hasil pemeriksaan semua objek yang ada di tempat itu.
Sedangkan sampling (data sampel) merupakan data perkiraan atau data yang berasal dari sebahagian kecil data populasi (elemen populasi).
Perlu diketahui bahwa di dalam suatu penelitian jarang sekali mempergunakan data populasi melainkan data sampel. Kenapa? karena jika mengambil data populasi akan banyak memerlukan tenaga ahli, banyak membutuhkan biaya, dan butuh waktu yang lebih lama dan lain-lain.

1.3.2. Macam-Macam Data
Pengambilan data banyak sekali caranya, antara lain dapat mendatangi langsung ke obyek yang akan diteliti, ataupun melalui kuesioner yang diisi oleh obyek penelitian ataupun melalui bacaan-bacaan yang dikutip dari artikel- artikel yang tersedia di perpustakaan maupun di kantor-kantor sebagai laporan yang telah diarsipkan.
Jika data yang diperoleh atau yang akan digunakan untuk tujuan penelitian disebut data observasi, sedangkan data yang diperoleh dengan datang langsung ke obyek ataupun melalui kuesioner terhadap obyek peneliti disebut data primer dan data yang diperoleh dari bacaan-bacaan atau yang dikutip dari laporan-laporan yang sudah ada baik di perpustakaan maupun di kantor-kantor disebut data sekunder.

1.4. PERANAN STATISTIK
Statistik yang diartikan dalam bahasa Latin sebagai “status” atau negara, sangat berperan di dalam pengelolaan semua manajemen baik manajemen yang besar maupun yang sekecil-kecilnya, manajemen negara pada umumnya, ekonomi, pertanian, perindustrian, kesehatan, farmasi, sampai ke manajemen rumah tangga pun dengan tidak disadari telah memanfaatkan statistik dan lain sebagainya.
Peranan statatistik di dalam dunia penelitian dan riset baik penelitian di bidang sosial maupun sains, selalu menggunakan ilmu statistik, mulai dari persiapan penelitian, teknik pengambilan data, sampai ke pengolahan data agar informasi-informasi atau gambaran-gambaran mengenai karateristik data dapat dipahami dengan mudah oleh pihak lainnya.

Salah satu contoh pemanfaatan statistik di dalam pengelolaan negara, di waktu akan diadakan PEMILU oleh pemerintah, mulai membuat sensus penduduk yang akan digunakan sebagai data untuk mempersiapkan apa-apa yang akan diperlukan, baik bahan, tempat, waktu sampai keperkiraan biaya yang akan digunakan pada pelaksanaan pemilu tersebut.
Contoh yang lain di bidang farmasi misalnya, untuk membuat campuran obat-obatan harus terlebih dahulu membuat tabel mengenai takaran-takaran, jenis bahan yang diperlukan.
Di kantor-kantor khususnya di bagian personalia sering kita lihat tabel-tabel yang tergantung pada dinding mengenai nama pegawai, jumlah pegawai, jenis kelamin, golongan, masa kerja, alamat dan lain sebagainya, Ini juga merupakan statistik yang dinamakan dengan statistik kepegawaian. 


Tidak ada komentar:

Posting Komentar